Гиалуроновая кислота для кожи и суставов: свойства, назначение, противопоказания. Гиалуроновая кислота — история Название гиалуроновой кислоты

Словосочетание «гиалуроновая кислота» не слышал, наверное, только мёртвый. За последние годы эта молекула просто захватила мир: «гиалуронку» (как её ласково называют поклонники) мажут, колют, глотают в таблетках и пьют в коктейлях – и всё ради молодости и красоты. Что же это за волшебное средство и правда ли, что мы, наконец, нашли молодильное яблочко? Давайте разбираться.

Что это такое?

Гиалуроновая кислота (ГК) – это не кислота в том значении, в котором мы обычно понимаем это слово: она не способна что-то растворить или отшелушить кожу (как, например, гликолевая или молочная). Это вещество естественным образом производится нашим организмом во множестве тканей, но больше всего в суставах.

В упрощенном понимании гиалуроновая кислота – это сахар, но с большой молекулярной массой, благодаря которой одна молекула ГК может притянуть и связать тысячу молекул воды. В нашем теле гиалуроновая кислота выполняет крайне важную задачу: сохранить воду в тканях. А увлажнённая кожа равно упругая кожа. Вот и всё волшебство.

Почему её используют в косметологии?


С возрастом в организме вырабатывается всё меньше и меньше гиалуроновой кислоты: в период с 25-ти до 50-ти лет её становится вдвое меньше. Ультрафиолет также снижает выработку «гиалуронки». Соответственно, вода уходит из кожи, из-за чего она становится вялой и морщинистой. Собственную ГК организм вырабатывать в прежних количествах не заставить, но зато можно ввести новую, искусственную порцию.

Как добывают гиалуроновую кислоту?

В прошлом веке ГК получали из рыбы или (страшно представить) из петушиных гребней. К счастью, этот варварский способ остался в прошлом, поскольку нашелся простой способ синтезировать гиалуроновую кислоту в лабораториях. В искусственном препарате нет бактерий, по составу он полностью идентичен «родной» кислоте, поэтому у него фактически нет противопоказаний.

Как работает крем с гиалуроновой кислотой?

На самом деле, это очень спорный момент – работают ли они вообще. Учёные и косметологи разделились на два лагеря: одни говорят, что размер молекулы ГК не позволяет ей проникать в кожу – и это действительно так. Диаметр молекулы гиалуроновой кислоты составляет около 3000 нм, в то время как расстояние между клетками кожи – не более 50 нм. Однако другие отвечают, что это вовсе и не нужно: находясь на поверхности кожи, гиалуроновая кислота уже, как губка, притягивает воду и тем самым увлажняет кожу.


Ещё один предмет для спора – низкомолекулярная ГК. Её создатели уверяют, что размер такой молекулы значительно уменьшен (до 5 нм), что позволяет веществу проникать в кожу и увлажнять её на глубоком уровне. По мнению других ученых, это абсурд, поскольку молекулы с малой молекулярной массой автоматически теряют способность удерживать на своей поверхности большое количество воды.

Точка в этих спорах пока не поставлена, поэтому вопрос, работают ли крема и сыворотки с гиалуроновой кислотой, остаётся открытым.

Как работают инъекции?


С помощью иглы врач-косметолог вводит препарат на основе гиалуроновой кислоты в проблемную зону (например, носогубную складку), и молекулы ГК начинают притягивать влагу с поверхности кожи в глубинные слои. Накапливаясь вокруг препарата, вода буквально выталкивает морщину изнутри. И лицо снова становится гладким и упругим.

Главный недостаток инъекций – это недолговременный эффект: процедуру нужно повторять каждые 6-12 месяцев. А вот стоимость препаратов и работы косметолога довольно высоки.

Как работают таблетки?


Скорее всего, совершенно никак. Гиалуроновая кислота – это простой полисахарид, который, попадая в ротовую полость и желудок, расщепляется на обыкновенные сахара, поэтому он никак не может попасть в кожу и оказать все те волшебные эффекты, которые обещают производители. Никакой научной базы, доказывающей эффективность БАДов с ГК у них нет, а выпускаются они по принципу «Не навредит – и то хорошо».

Гиалуроновая кислота (hyaloid = стекловидный + uronic = кислота) – вещество, относящееся к группе полисахаридов, синтезируемое клетками большинства живых организмов, являющееся важным компонентом кожи, мышц, нервов и других тканей человека.

В описаниях составов косметических средств её иногда назывют «гиалурон», биохимики чаще употребляют словосочетание «гиалуронат натрия», поскольку в организме человека она присутствует в основном в форме натриевой соли.

Биологическая роль

Гиалуроновая кислота необходима для формирования межклеточного вещества, которое является средой для функционирования клеток: их деления, поступления к ним питательных веществ, выведения продуктов жизнедеятельности.

Половина всей гиалуроновой кислоты, находящейся в организме, содержится в коже. Здесь она является естественным заполнителем промежутков между волокнистыми элементами кожи – коллагеном и эластином , участвует в их синтезе.

Также гиалуроновая кислота задействована в процессах заживления ран, влияет на иммунные реакции, блокирует действие на клетки свободных радикалов, оберегая ткани от преждевременного старения.

Одним из важнейших свойств гиалуроновой кислоты является её высочайшая гидрофильность - способность связывать влагу. Одна её молекула способна удерживать до 500 молекул воды. Даже 1% водный раствор гиалуроновой кислоты уже не жидкость, а вязкий гель.

К чему приводит дефицит гиалуроновой кислоты?

С возрастом, под влиянием факторов окружающей среды и естественных процессов старения, содержание гиалуроновой кислоты в организме человека уменьшается, к 50-летнему возрасту её количество снижается вдвое. Снижение концентрации г.к. в коже приводит к её обезвоживанию, уменьшению синтеза в ней коллагена и эластина, что проявляется в виде сухости , дряблости , появлении морщин .

Применение в косметологии

В современной косметологии гиалуроновая кислота используется в качестве основного компонента препаратов для увлажнения кожи. Более эффективного вещества для этой цели ещё не найдено.

Поскольку гиалуроновая кислота не является чужеродным веществом для организма, препараты на её основе являются гипоаллергенными.

Гиалуроновая кислота, применяемая в косметологии, может быть как естественного, так и искусственного происхождения. Поскольку её метаболизм очень активен (молекула г.к. «живет» в организме 2-3 дня, затем она разрушается и клетками синтезируется новая) для введения в глубокие слои кожи чаще используется искусственно синтезированные вещества, отличающиеся тем, что в них молекулы г.к. «сшиты» между собой и для их расщепления организму требуется большее время.

В составе средств для наружного применения (кремов, эмульсий, лосьонов и др.) гиалуроновая кислота выступает в роли увлажнителя. Тончайшая пленка на поверхности кожи, образуемая ей, предотвращает чрезмерное испарение воды, задерживает необходимую влагу. При этом она не закупоривает поры кожи, не нарушает чрезкожный газообмен, способствует более глубокому проникновению других активных веществ, входящих в состав средства. Но, нанесенная на поверхность кожи, гиалуроновая кислота не проникает в её глубокие слои, обеспечивает лишь поверхностное, кратковременное увлажнение.

Для глубокого и долговременного увлажнения, для стимуляции фибробластов используется введение гиалуроновой кислоты в глубокие слои кожи - метод биоревитализации .

Препараты с высокой концентрацией гиалуроновой кислоты, имеющие гелеобразную форму, используются в контурной пластике – для коррекции носогубных складок, морщин, увеличения объема губ.

В препаратах для мезотерапии используется свойство гиалуроновой кислоты улучшать проникновение внутрь клеток других веществ, вводимых вместе с ней.

Гиалуроновая кислота используется не только в косметологии, она входит в состав лекарств, широко применяемых во многих областях медицины – офтальмологии, кардиологии, трансплантологии, хирургии и др.

В конце 80-х годов ХХ века врачи заметили, что процесс заживления ран во внутриутробном периоде происходит несколько иначе, чем после рождения. Для лечения врожденных аномалий развития хирургические операции проводили плодам, находящимся внутри тела беременных (на 2-6 месяце беременности). После родов на телах этих детей никаких следов проведенных операций не обнаруживалось. Ученые объясняют это очень большой концентрацией гиалуроновой кислоты в теле плода и амниотической жидкости, его окружающей.

В косметологии наибольший успех имеют инъекционные процедуры - контурная пластика, биоревитализация, биорепарация. Активным компонентом препаратов, применяющихся для их выполнения, является гиалуроновая кислота (ГК). Несмотря на неоднозначные высказывания в СМИ, гиалуроновая кислота в косметологии не теряет своей популярности уже на протяжении около двух десятков лет.

Роль ГК в организме человека

Все системы и органы состоят из клеток: кровь - из форменных элементов, печень - из гепатоцитов, нервная система - из нейронов. Пространство между всеми клетками занимает соединительная ткань, составляющая около 85% всего организма. Являясь единой структурой, она взаимодействует со всеми другими тканями (эпителиальной, нервной, мышечной и т. д.) и осуществляет их взаимосвязь между собой.

Соединительная ткань, в зависимости от ее состава, может быть в различных физических состояниях - в жидком (кровь, лимфа, синовиальная внутрисуставная и спинномозговая жидкость), твердом (кость), в виде геля (межклеточная жидкость и хрящ, стекловидное тело глаза). Наиболее полно она присутствует в кожных структурах - дерме, гиподермальном и базальном слоях.

Соединительную ткань от других тканей организма отличает высокая развитость ее основы при относительно небольшом количестве структур клеток. Основа состоит из эластиновых и коллагеновых волокон, а также сложных молекулярных белковых и аминокислотных соединений с аминосахарами. Важнейшим из них и является гиалуроновая кислота.

Одна молекула ГК способна связывать около 500 молекул воды. В организме человека среднего возраста она синтезируется фибробластами в количестве 15-17 гр. Половина ее содержится в клетках рогового слоя кожи, а также между волокнами эластина и коллагена. Она стимулирует выработку этих белков, создает условия для их фиксированного расположения, придавая тем самым упругость и эластичность кожному покрову.

Видео

Процессы старения тканей

Под воздействием фермента гиалуронидазы гиалуроновая кислота разрушается. Процессы ее восстановления и расщепления происходят непрерывно. Около 70% разрушается и восстанавливается в течение суток. Преобладание того или иного процесса зависит от:

  • суточных и сезонных биоритмов;
  • возраста;
  • психологического состояния;
  • нерационального питания;
  • никотиновой интоксикации и избыточного УФ облучения;
  • приема определенных медикаментозных препаратов и пр.

Эти факторы влияют не только на синтез ГК (гиалуроната), но и на его структуру. Снижение его количества приводит к уменьшению связанной воды в тканях и появлению признаков их старения. Дефектные же молекулы сохраняют способность связывать воду, но теряют способность отдавать ее. Кроме того, естественные возрастные процессы приводят к концентрации ГК в глубоких кожных слоях, что является причиной межклеточного отека ткани на границе дермы и гиподермы и обезвоженности более поверхностных слоев.

Все эти процессы с увеличением возраста и под влиянием негативных факторов нарастают и приводят к сухости кожи при одновременной одутловатости лица и отеков под глазами, снижению ее эластичности и упругости, появлению морщин и пигментации.

Виды ГК в организме

Уникальность ее состоит в наличии молекул с различной длиной цепочки полисахаридов. От длины цепочки во многом зависят свойства гиалуроновой кислоты и ее влияние на клетки:

  1. Молекулы с короткой цепью, или низкомолекулярная гиалуроновая кислота - оказывает противовоспалительное действие. Этот вид кислоты применяется в целях лечения ожоговой болезни, трофических язв, угрей, псориаза и герпетических высыпаний. Она используется в косметологии в виде одного из компонентов тоников и кремов наружного применения, так как, не теряя своих свойств, длительно и глубоко проникает в кожу.
  2. Среднемолекулярная ГК, обладающая свойством подавления миграции, размножения клеток и др. Она используется при лечении глаз и некоторых видов артритов.
  3. Высокомолекулярная - стимулирует клеточные процессы в коже и обладает свойством удерживать большое число молекул воды. Она придает коже упругость и высокую устойчивость к внешним негативным факторам. Этот вид используется в офтальмологии, хирургии, а в косметологии - в препаратах для инъекционных методик.

Промышленные виды

В зависимости от технологии производства гиалуронат натрия подразделяется на два вида:

  1. Длительное время применялись препараты с гиалуроновой кислотой животного происхождения. Ее получали путем ферментативного расщепления измельченных частей животных (глаза и хрящи крупного рогатого скота, петушиные гребни, синовиальная внутрисуставная жидкость, пуповины) в результате специальной двухэтапной очистки и осаждения. Технология предусматривала использование дистиллированной воды и высокой температуры (85-100 градусов). Значительная часть высокомолекулярной фракции разрушалась, превращаясь в низкомолекулярную. Кроме того, оставались белки животного происхождения.

    Эффект после инъекций таких препаратов в целях косметической коррекции лица сохранялся недолго, иногда способствовал образованию дермальных узлов. Но препарат особенно был опасен тем, что часто становился причиной выраженных воспалительных и аллергических реакций из-за наличия животного белка. Поэтому такая технология уже почти не применяется.

  2. С недавнего времени в фармацевтической промышленности ГК получают способом биотехнологического синтеза. В этих целях используются микроорганизмы (стрептококки), выращенные на пшеничном бульоне. Они вырабатывают гиалуроновую кислоту, которая на последующих этапах очищается, высушивается и подвергается многократному бактериологическому и химическому исследованиям. Такой препарат почти полностью соответствует кислоте, вырабатываемой в организме человека. Он почти не вызывает аллергических и воспалительных реакций.

Применение в косметологии

Гиалуроновая кислота применяется для введения в кожу и подкожные слои с помощью различных способов:

  1. Инъекционных.
  2. Безинъекционных.

Инъекционные процедуры с гиалуроновой кислотой применяются в таких методиках, как:

  • , и - введение препарата в средние слои кожи; применяется при возрастных изменениях, сухости кожного покрова и для повышения его эластичности, тонуса и цвета, устранения угревой сыпи, растяжек и т. д.; длительность сохранения гиалуроновой кислоты в дерме - до 14 суток;
  • - заполнение веществом подкожных структур с целью разглаживания морщин и коррекции контуров лица; препарат сохраняется под кожей в течение 1-2 недель;
  • и - введение модифицированной гиалуроновой кислоты, которая сохраняется в коже до 3 недель.

Вопросы

Что лучше: ботокс или ГК?

Учитывая разнонаправленность механизмов действия ботокса и гиалуроновой кислоты, они применяются для достижения различных эффектов. Возможно их сочетание. Однако необходимо помнить о том, что после введения должно пройти не менее двух недель.

Можно ли совмещать введение коллагеновых филлеров и ГК?

Хорошо сочетаются филеры на основе коллагена и ГК. Первый обеспечивает коже плотность и структуру и действует в среднем 4 месяца, второй - естественное увлажнение и прочность в течение 6-9 месяцев.

Любое применение инъекций гиалуроновой кислоты должно осуществляться только врачом-косметологом.

Первое упоминание о необычном полисахариде с высокой молекулярной массой, который выделили из стекловидного тела бычьего глаза, было сделанo в 1934 году немецкими биохимиками Karl Meyer и John Palmer. Именнo они предложили назвать новое вещество гиалуроновой кислотой. Но еще в 1918 году Levene и Lopez - Suarez выделили из стекловидного тела и пуповинной крови полисахарид, состоявший из глюкозамина, глюкуроновой кислоты и небольшого количества сульфат-иoнов. Тогда его название было мукоитин - серной кислоты, но в настоящее время установилось, что это была гиалуроновая кислота, выделенная с примесью сульфатированных гликозаминогликанов .

В течение следующих 10 лет K. Meyer и ряд других ученых выделили гиалуроновую кислоту из органов животных. В 1937 г F. Kendall выделил гиалуроновую кислоту из капсул стрептококков .

Первый опыт применения ГК в медицине относится к 1943 г., когда советский врач Николай Федорович Гамалея использовал ее в комплексных повязках для обмороженных красноармейцев в военном госпитале. Экстракт из пуповины, названный им «фактором регенерации», был утвержден Минздравом СССР в качестве препарата «Регенератор». Так же венгерский ученый Андре Балаш с 1947 исследовал вязкость ГК в зависимости от pH и ионной силы раствора, ее расщепление под действием ультрафиолета, а также изучал, как гиалуроновая кислота действует на живые клетки .

В настоящее время гиалуронан как объект исследования можно встретить в биохимии, молекулярной биофизике, биоорганической и радиационной химии. Медицинские аспекты включают изучение роли гиалуроновой кислоты в оплодотворении, эмбриогенезе, выработки иммунного ответа, в заживлении ран, онкологических и инфекционных заболеваниях, процессах старения и в решении проблем эстетической медицины. Широкий спектр практического применения гиалурoновой кислоты способствует регенерации эпителия, предотвращает образование грануляционных тканей, спаек, рубцов, снижает отечность, уменьшает кожный зуд, нормализует кровообращение, способствует рубцеванию трофических язв, предохраняет внутренние ткани глаза. Достаточно хорошо гиалурoновая кислота используется в прикладной биохимии и энзимологии в качестве субстрата для количественного определения ферментов гиалуронидазнoго действия .

Что же представляет собой гиалуроновая кислота на самом деле? Это длинная неразветвленная молекула, в которой чередуются остатки D-глюкуроновой кислоты и N-ацетилглюкозамина. Не вдаваясь в подробности, отметим, что оба эти вещества - это модифицированные молекулы глюкозы. Молекула гиалурoновой кислоты может содержать более 30 000 остатков каждого из этих веществ. Кроме того, в организме эта цепочка всегда связана с некоторым количеством белка. Интересно, что подобная структура универсальна и встречается у самых разных представителей животного мира и даже у некоторых бактерий. Гиалуроновая кислота относится к классу гликозаминогликанов .

Рисунок 1. Структура гиалуроновой кислоты

Ранее использовались методы получения гиалурoновой кислоты из стекловидного тела глаза коровы и гребешка петуха. Недостатками данных методов производства являлись их дороговизна и наличие примесей белка в конечном продукте, что приводило к большому количеству аллергических реакций на препарат.

Современное производство ГК основано на процессе ферментации с использованием бактерий (Streptococcus equi и Streptococcus zooepidemicus). ГК, полученная таким путем, имеет более высокую степень очистки, чем и объясняется лучшая переносимость ГК пациентами. Биотехнология получения гиалуронана из бактериальных штаммов продуцентов включает культивирование их в подбираемых условиях, при которых на стадии логарифмического роста на поверхности бактериальных клеток формируется капсула из полисахарида, а на стационарной стадии роста ГК может секретироваться в культурaльную жидкость, капсула истончается или полностью исчезает .

ГК чувствительна к кислотно-щелочному гидролизу. Даже слабое подкисление раствора ГК уксусной кислотой приводит к необратимому снижению вязкости в 2,5 раза. Минеральными кислотами ГК полностью гидрoлизуется до глюкурoновой кислоты, глюкoзамина, уксусной кислоты и двуокиси углерода. Разбавленная серная кислота за короткое время гидрoлизует кислоту с образованием кристаллов дисахаридов.

Окислительно-восстановительная деполимеризация гиалурoнана. Деструкция полисахаридной макромолекулы под действием окслительно-восстановительных сред протекает по свободнoрадикальному механизму. Свободные радикалы образуются с участием аскорбиновой кислоты, гиалуронана и кислорода. Доказано, что гиалурoновая кислота депoлимеризуется под действием ионов железа в присутствии аскорбиновой кислоты. Следовательно ГК, выделенная в атмосфере азота или аргона, имеет более высокую степень полимернoсти по сравнению с выделенной на воздухе .

Для медицинского применения необходима стерилизация растворов гиалуронана. Ее осуществляют автоклавированием при температуре 120-130ºС или ионизирующим гамма-излучением. В обоих случаях происходит значительная деполимеризация биополимера и потеря его исходной терапевтической активности. Известны способы защиты растворов гиалуронана от деполимеризации, основанные на добавлении к растворам различных аминокислот, борной кислоты и глицерина, сульфата гидрохинолина, мочевой кислоты, фенольных соединений (пирогаллол) .

Характерные свойства гиалуроновой кислоты – ее выраженная биологическая активность, прекрасная биосовместимость, отсутствие антигенности, раздражающего и других побочных эффектов – обратили на себя внимание ученых. Благодаря своим уникальным физико-химическим свойствам ГК нашла применение в различных областях медицины, косметологии и ветеринарии. Тот факт, что ГК входит в состав многих тканей (кожа, хрящи, стекловидное тело) и является органоспецифичной и видонеспецифичной, обуславливает ее применение в лечении заболеваний, связанных с этими тканями .

Биологические функции гиалуроновой кислоты можно разделить на «пассивные» и «активные». Как инертный материал, ГК участвует в гомеостазе тканей, в стерическом регулировании (осмосе) проникновения каких-либо субстанций, выполняет роль «смазки», улучшающей подвижность суставов и т.д. «Активные» функции ГК заключаются в специфическом связывании с белками в межклеточном матриксе и на поверхности клетки. Такое взаимодействие играет важную роль в образовании хрящевой ткани, в процессах клеточной пролиферации, в морфогенезе и эмбриональном развитии животных, а также в механизмах воспаления и возникновения рака .

Гиалуроновая кислота используется в онкологии как лечебное средство. Механизмы действия ГК на опухолевые клетки разнообразно. На молекулярном уровне механизм заключается в том, что высокомолекулярная ГК, связываясь с рецепторами на клеточной мембране опухолевых клеток, замедляет их миграцию и образование метастазов. Второй механизм действия состоит в том, что введение высокомолекулярной ГК способствует формированию соединительнотканной капсулы вокруг опухоли. Третий механизм связан со свойством высокомолекулярной фракции тормозить васкуляризацию опухоли (прорастание кровеносных сосудов в опухоль) и тем самым приводить к замедлению роста и метастазированию опухолей, а низкомолекулярной, наоборот, индуцировать .

Гиалуроновая кислота довольно хорошо проявила себя в заживлении ожоговых ран, язв, рубцов и послеоперационных вмешательств. Ученые выяснили, что она не имеет раздражающего действия, а даже наоборот вызывает противовоспалительный эффект, способствует быстрой регенерации ткани. Биоэксплантат (пленка) на основе окисленной ГК в эксперименте показал ускоренное заживление швов кишечных анастомозов повышенного риска.

ГК используют при приготовлении фармацевтических композиций в качестве загустителей, смазывающих веществ, агентов для пленочных покрытий, устойчивых к желудочному соку, в частности при получении капсул, гелей, коллоидов и различных устройств (например, контактных линз, предметов из марли и т.д.). Вероятно, в основе механизма накопления в соединительно-тканных структурах ряда лекарственных веществ и антибиотиков лежит связывание их с протеогликанами тканей. То же можно утверждать и о механизмах отложения в тканях, особенно в матриксе соединительной ткани, различных патологических продуктов. В норме в первые сутки заживления ран в них отмечается повышение концентрации ГК, которая связываясь с фибриновой сетью, образует переходный матрикс, стимулирующий активацию и миграцию гранулоцитов, макрофагов и фибробластов, пролиферацию эпителиальных клеток. Кроме того, ГК посредством усиления фагоцитоза способствует более полному очищению раны от некротических элементов. Вследствие усиления активности макрофагов увеличивается образование трофического фактора, который привлекает фибробласты и эндотелиальные клетки в пораженную область .

Содержание гиалуронана в коже человека не постоянная величина. Существуют незначительные сезонные колебания ГК в дерме: летом уровень гиалуронана несколько ниже, чем в зимний период. Это связывают с повышенной скоростью деградации ГК под действием УФ-излучения. Наиболее значимо возрастное уменьшение концентрации ГК. Начиная с 60-летнего возраста происходит кратное снижение концентрации ГК в дерме. Поэтому инъекционное внутриклеточное введение нативной ГК представляется вполне естественным способом воспаления ее дефицита. Данный инъекционный метод в эстетической медицине получил название биоревитализации .

В научной литературе можно встретить обширную информацию о химической структуре, макромолекулярной характеристики, биологических свойствах и медицинском применения гиалуроновой кислоты.

ГК входит в состав основного межклеточного вещества соединительной, эпителиальной и нервной тканей, в большом количестве присутствует в стекловидном теле глаза, синовиальной жидкости суставов, коже, стенках артерий и вен, сердечных клапанах, в глoмерулярной базальной мембране почек.

С момента открытия гиалурoновой кислоты произошла значительная эволюция взглядов. Если вначале считали, что данный полисахарид служит пассивным структурным компонентом межклеточного матрикса, то к настоящему времени он включен во многие биологические процессы: от размножения, миграции, дифференцировки клеток в процессе эмбриогенеза до регуляции процессов воспаления и заживления ран, метастазирования раковых клеток. В организме ГК выполняет множественные физиологические функции: служит основой функционирования системы организма, определяет проницаемость тканей и сосудов кровеносной системы, стойкость к проникновению инфекций . Но с возрастом все функции замедляются.

Такое широкое разнообразие биологических свойств гиaлуроновой кислоты обусловлено функцией молекулярной массы, которая играет значительную роль в поведении клеток, полиморфизмом структурных форм и физико-химическими свойствами молекул разной молекулярной массы, зависящими от ионного окружения и концентрации биополимера в тканях и органах .

Подводя итог, можно сказать, что гиалуроновая кислота нашла свое применение во многих отраслях медицины. Ее применяют в косметологических инъекциях (биоревитализация), входит в состав различных косметических средств. Следует отметить, что ГК может иметь и негативные последствия в частых инъекциях под кожу. Чтобы поддержать свою кожу в тонусе нужно вести здоровый образ жизни, правильно питаться и не злоупотреблять вредными привычками. Так же офтальмологи применяют ее в качестве лечения катаракты, синдрома «сухого глаза». В иммунологии применяют для комплексного лечения иммунодефицитных состояний при вирусных инфекциях. Так же можно использовать для лечения язвенных болезней желудка, двенадцатиперстной кишки, с помощью активации трипсина.

Список литературы

  1. Егоров Е.А. Гиалуроновая кислота: применение в офтальмнологии и терапии синдрома «сухого глаза» // РМЖ. Клиническая офтальмология. – 2013. – Том 13, №2. С. – 72.
  2. Сигаева Н.Н., Колесов С.В., Назаров П.В., Вильданова Р.Р. Химическая модификация гиалуроновой кислоты и ее применение в медицине // Вестник Башкирского университета. – 2012. – Т.17. №3. С. – 1221 – 1222.
  3. Стрельникова Л.Н., Клещенко Е.В., Астрин А.В. Химия и жизнь // Ежемесячный научно – популяционный журнал. – 1.12.2010. №12. С. – 22 – 23.
  4. Хабаров В.Н., Бойков П.Я., Селянин М.А. Гиалуроновая кислота: получение, свойства, применение в биологии и медицине. – М.: Практическая медицина, 2012. – 224с.:ил. С. – 9 – 11, 19 – 30, 218.

Молекулярная формула: (C14H21NO11)n
Растворимость в воде: растворим (натриевая соль)
LD50:
2400 мг / кг (мыши, пероральное введение, натриевая соль)
4000 мг / кг (мыши, подкожное введение, натриевая соль)
1500 мг / кг (мыши, внутрибрюшное введение, натриевая соль)
Связанные соединения: D-глюкуроновая кислота и DN-ацетилглюкозамина (мономеры)
Гиалуроновая кислота (гиалуронат или ГК) является анионным, не сульфатированным гликозаминогликаном, широко распространяется в соединительной, эпителиальной и нервной ткани. Является уникальным среди гликозаминогликанов соединением, поскольку представляет собой не сульфатированную форму, формируется в плазматической мембране, а не в Гольджи, и может достигать очень больших размеров, с молекулярной массой, часто достигающей миллионов. Являясь одним из основных компонентов внеклеточного матрикса, гиалуроновая кислота в значительной степени способствует пролиферации и миграции клеток, а также может быть вовлечена в развитие некоторых злокачественных опухолей. В среднем, у человека с весом 70 кг (154 фунтов) содержится в организме около 15 граммов гиалуроновой кислоты, одна треть из которой восполняется (деградирует и синтезируется) каждый день. Гиалуроновая кислота является также составной частью стрептококковой группы А внеклеточной капсулы А, и, как полагают, играет важную роль в вирулентности (степени патогенности микроорганизма).

Медицинское применение

Гиалуроновая кислота иногда используется для лечения остеоартрита коленного сустава в виде препарата для инъекций в сустав. Эффективность гиалуроновой кислоты при таком применении, однако, не была доказана, и такое использование может быть связано потенциально с серьезными побочными эффектами. Такие симптомы, как сухая, чешуйчатая кожиа (ксероз), вызванные, например, атопическим дерматитом (экземой), могут лечиться с использованием лосьона для кожи, содержащего гиалуронат натрия в качестве активного ингредиента. При некоторых видах рака, уровни гиалуронана коррелируют со злокачественностью и плохим прогнозом. Гиалуроновая кислота, таким образом, часто используется в качестве опухолевого маркера для определения рака предстательной железы и рака молочной железы. Вещество также может использоваться для мониторинга прогрессирования заболевания. Гиалуроновая кислота также может быть использована в послеоперационном периоде для заживления тканей, особенно после хирургии катаракты. Современные модели заживления ран предлагают использовать более крупные полимеры гиалуроновой кислоты на ранних стадиях заживления, что позволит физически освободить место для белых кровяных клеток, опосредующих иммунный ответ. Гиалуроновая кислота также используется в синтезе биологических каркасов для заживления ран. Эти каркасы, как правило, содержат белки, такие как фибронектин, прикрепленные к гиалуроновой кислоте, чтобы облегчить миграцию клеток в рану. Это особенно важно для людей, страдающих диабетом и хроническими ранами. В 2007 году EMA продлила свое одобрение на препарат Hylan GF-20 для лечения боли при остеоартрите лодыжки и предплечья.

Функции

До конца 1970-х годов, гиалуроновую кислоту считали «вязкой» молекулой, распространенным углеводным полимером и частью внеклеточного матрикса. Гиалуроновая кислота является основным компонентом синовиальной жидкости, которое повышает вязкость жидкости. Наряду с лубрицином, гиалуроновая кислота является одним из основных смазочных компонентов жидкости. Гиалуроновая кислота является важным компонентом суставного хряща, где она служит покрытием вокруг каждой ячейки (хондроцитов). Когда аггрекановые мономеры связываются с гиалуроновой кислотой в присутствии белка, образуются большие, высоко отрицательно заряженные агрегаты. Эти агрегаты впитывают воду и отвечают за упругость хряща (его устойчивость к компрессии). Молекулярная масса (размер) гиалуроновой кислоты в хряще уменьшается с возрастом, но при этом ее количество увеличивается. Гиалуроновая кислота является также основным компонентом кожи и участвует в процессах восстановления тканей. Когда кожа подвергается чрезмерному воздействию ультрафиолетовых лучей спектра B, она становится воспаленной (образуются солнечные ожоги), и клетки в дерме прекращают производство большого количества гиалуроновой кислоты, и увеличивают скорость ее деградации. После ультрафиолетового облучения, продукты деградации гиалуроновой кислоты накапливаются в коже. Присутствуя в изобилии во внеклеточной матрице, гиалуроновая кислота также воздействует на гидродинамику ткани, движение и пролиферацию клеток, а также участвует в ряде взаимодействий рецепторов клеточной поверхности, в том числе основных рецепторов, CD44 и RHAMM. Стимуляция CD44 широко применяется в качестве маркера активации клеток в лимфоцитах. Воздействие Гиалуронана на рост опухоли может быть связано с его взаимодействием с CD44. Рецептор CD44 участвует во взаимодействиях клеточной адгезии, опосредованной с опухолевыми клетками. Несмотря на то, что гиалуроновая кислота связывается с рецептором CD44, есть свидетельства того, что продукты деградации ГК преобразуют их импульс воспаления через толл-подобный рецептор 2 (TLR2), TLR4 или через оба рецептора TLR2 и TLR4 в макрофаги и дендритные клетки. Толл-подобный рецептор и гиалуроновая кислота играют важную роль в формировании врожденного иммунитета. Высокие концентрации гиалуроновой кислоты в мозге крысят, и пониженные концентрации в мозге взрослых крыс, наводят на мысль, что ГК играет важную роль в развитии мозга.

Структура

Свойства ГК впервые были установлены в 1930 году в лаборатории Карла Мейера. Гиалуроновая кислота представляет собой полимер дисахаридов, которые входят в состав D-глюкуроновой кислоты и DN-ацетилглюкозамина, связанные через чередующиеся β-1,4 и β-1,3 гликозидные связи. Гиалуроновая кислота может состоять из 25000 повторяющихся единиц дисахарида в длину. Полимеры ГК могут варьироваться в размере от 5000 до 20000 тысяч Да в естественных условиях. Средняя молекулярная масса гиалуроновой кислоты в синовиальной жидкости человека составляет 3-4 млн Да, а молекулярная масса гиалуроновой кислоты, выделенной из пуповины человека, составляет 3140000 Да. Гиалуроновая кислота является энергетически стабильным веществом, отчасти из-за стереохимии составляющих ее дисахаридов. Громоздкие группы в каждой молекуле сахара находятся на пространственно привилегированных позициях, в то время как меньшие атомы водорода занимают менее благоприятные осевые положения.

Биологический синтез

Гиалуроновая кислота синтезируется классом интегральных мембранных белков, называемых гиалуроновыми синтазами, три типа которых присутствуют у позвоночных: Has1, HAS2, и HAS3. Эти ферменты постепенно удлиняют гуалуронан, попеременно добавляя к нему N – ацетилглюкозамин и глюкуроновую кислоту, в то время пока он выталкивается через ABC-транспортер и через клеточную мембрану во внеклеточное пространство. Синтез гиалуроновой кислоты ингибируется 4-метилумбеллифероном (гимекромон, гепарвит), производной 7-гидрокси-4-метилкумарина. Это селективное ингибирование (без ингибирования других гликозаминогликанов) может оказаться полезным в предотвращении метастазирования злокачественных опухолевых клеток. Недавно была создана генетически модифицированная (ГМО) сенная палочка для получения ГК, в виде запатентованного продукта, пригодного для употребления человеком.

Клеточные рецепторы гиалуроновой кислоты

На настоящий момент, клеточные рецепторы ГК делятся на три основных группы: CD44, рецептор для ГК-опосредованной моторики (RHAMM) и молекула межклеточной адгезии -1. CD44 и ICAM-1 уже были известны как молекулы клеточной адгезии с другими признанными лигандами, до того как было открыто их связывание с ГК. Рецептор CD44 широко распространен по всему телу. Формальная демонстрация связывания ГК-CD44 была предложена Аруффо и соавторами в 1990 году. На сегодняшний день CD44 признан в качестве основного клеточного поверхностного рецептора ГК. CD44 опосредует взаимодействие клеток с ГК и связывание двух функций в качестве важной части в различных физиологических функциях, таких как агрегация, миграция, пролиферация и активация клеток; адгезия клетка-клетка и клетка-субстрат; эндоцитоз ГК, который приводит к катаболизму ГК в макрофагах и т.д. Две значимые роли CD44 в кожных процессах были выдвинуты Кая и другими. Первая заключается в регулировании пролиферации кератиноцитов в ответ на внеклеточные стимулы, а вторая – в поддержании местного гомеостаза ГК. ICAM-1 (фактор межклеточной адгезии 1) известен, главным образом, как метаболический рецептор клеточной поверхности ГК, этот белок может отвечать в основном за клиренс ГК из лимфы и плазмы крови, на его долю приходится, возможно, большая часть всего метаболизма ГК в организме. Таким образом, связь лиганда данного рецептора вызывает высоко скоординированный каскад событий, который включает в себя формирование эндоцитозного пузырька, его соединение с первичными лизосомами, ферментативное расщепления до моносахаридов, активный трансмембранный перенос этих сахаров в клеточном соке, фосфорилирование аспарагиновой кислоты и ферментативное ацетилирование. ICAM-1 может также служить в качестве молекулы клеточной адгезии, связь ГК с ICAM-1 может способствовать контролю ICAM-1-опосредованной воспалительной активации.

Расщепление

Гиалуроновая кислота расщепляется семейством ферментов, называемым гиалуронидазы. В организме человека присутствует, по крайней мере, семь типов ферментов гиалуронидазы, некоторые из которых являются опухолевыми супрессорами. Продукты распада гиалуроновой кислоты, олигосахариды и ГК с очень с низким молекулярным весом, проявляют проангиогенные свойства. В дополнение к этому, недавние исследования показали, что фрагменты гиалуроновой кислоты могут вызывать воспалительные реакции макрофагов и дендритных клеток на месте поврежденной ткани и пересажанной кожи.

Действие

Заживление ран

Кожа обеспечивает механический барьер для внешней среды и действует для предотвращения проникновения инфекционных агентов. Поврежденная ткань подвержена инфицированию; поэтому, быстрое и эффективное лечение имеет решающее значение для реконструкции барьерной функции. Заживление ран на коже представляет собой сложный процесс, и включает в себя множество взаимодействующих процессов, опосредованных гемостазом и выделением тромбоцитарных факторов. Следующими этапами являются: воспаление, образование грануляционной ткани, эпителизация и реконструкция. ГК, вероятно, играет многогранную роль в ходе этих клеточных и матричных процессов. ГК, предположительно, играет роль в заживлении ран кожи.

Воспаление

Многие биологические факторы, такие как факторы роста, цитокины, эйкозаноиды и т.д., генерируются в процессе воспаления. Эти факторы являются необходимыми на последующих стадиях заживления ран, поскольку отвечают за миграцию воспалительных клеток, фибробластов и эндотелиальных клеток в месте раны. В начале воспалительной фазы процесса заживления раны, поврежденная ткань насыщена ГК. Вероятно, это является отражением повышенного синтеза ГК. ГК действует как стимулятор на ранней стадии воспаления и имеет решающее значение в процессе заживления всей поврежденной ткани. Для совершенствования клеточной инфильтрации, велись наблюдения за ГК в мышиной модели воздушного мешка (доклинические исследования; в спинной области мышей создается полость при помощи подкожного введения стерильного воздуха) воспаления, индуцированного каррагинаном/IL-1. Кабаши и его коллеги показали дозозависимое увеличение производства провоспалительных цитокинов TNF -α и IL-8 с помощью маточных фибробластов человека в концентрации ГК от 10 мкг/мл до 1 мг/мл через опосредованный CD44- механизм. Клетки эндотелия, в ответ на воспалительные цитокины, такие как TNF-α, и бактериальные липополисахариды, также синтезируют ГК, что облегчает первичную адгезию цитокин-активированных лимфоцитов, экспрессирующих виды ГК-связи CD44 при условиях ламинарного и статического потока. Интересно отметить, что ГК имеет противоположные двойные функции в воспалительном процессе. Она не только может способствовать заживлению воспаления, как указано выше, но также может вызывать умеренную воспалительную реакцию, которая может способствовать стабилизации матрицы грануляционной ткани.

Гранулирование и организация матрицы грануляционной ткани

Грануляционная ткань является перфузируемой, волокнистой соединительной тканью, которая заменяет сгусток фибрина при заживлении ран. Она, как правило, растет от основания раны и способна заполнить рану практически любых размеров. ГК присутствует в изобилии в матрице грануляционной ткани. Все разнообразие функций клеток, которое необходимо для восстановления тканей, можно приписать к богатой ГК сети. Эти функции включают в себя содействие миграции клеток в предварительной матрице раны, клеточную пролиферацию и организацию матрицы грануляционной ткани. Инициирование воспаления имеет решающее значение для формирования грануляционной ткани, поэтому провоспалительная роль ГК, как описано выше, также вносит свой вклад в эту стадию заживления ран.

ГК и миграция клеток

Миграция клеток имеет важное значение для формирования грануляционной ткани. Ранняя стадия развития грануляционной ткани опосредована богатым ГК внеклеточным матриксом, который рассматривается в качестве благоприятной среды для миграции клеток в этой временной матрице раны. Роль ГК в миграции клеток можно объяснить ее физико-химическими свойствами, как указано выше, а также ее прямым взаимодействием с клетками. Для осуществления первого сценария, ГК предоставляет собой открытую водосодержащую матрицу, которая облегчает миграцию клеток, тогда как в последнем случае, направленная миграция и контроль двигательных механизмов клетки опосредованы через специфическое взаимодействие клеток между ГК и поверхностными клеточными рецепторами ГК. Как уже говорилось ранее, тремя главными поверхностными клеточными рецепторами ГК являются CD44, RHAMM, и ICAM-1. RHAMM больше связан с клеточной миграцией. Он образует связи с несколькими протеинкиназами, связанными с клеточной локомоцией, например, внеклеточной регулируемой протеинкиназой (ERK), p125fak и pp60c-Src. Во время эмбрионального развития, путь миграции, через который мигрируют клетки нервного гребня, богат ГК. ГК тесно связана с процессом миграции клеток в матрице грануляционной ткани, исследования показывают, что движение клеток может быть перекрыто, по крайней мере, частично, деградацией ГК или путем блокирования связывания ГК с рецептором. Обеспечивая динамическую силу в клетке, синтез ГК также связан с клеточной миграцией. Как правило, ГК синтезируется в плазматической мембране и выходит непосредственно во внеклеточную среду. Это может способствовать гидратации микросреды в местах синтеза, и имеет важное значение для миграции клеток путем содействия клеточному отщеплению.

Роль ГК при регулировании воспалительного ответа

Хотя воспаление является составной частью формирования грануляционной ткани, для нормального восстановления тканей, должно процесс воспаления следует сдержать. Гранулированная ткань подвержена воспалениям, имеет высокую скорость метаболизма, опосредованного деградацией матричных ферментов и реакционноспособных метаболитов кислорода, которые являются продуктами воспалительных клеток. Стабилизация матрицы грануляционной ткани может быть достигнута путем сдерживания воспаления. ГК функционирует как важный фактор в этом процессе замедления, что противоречит ее роли в воспалительной стимуляции, как описано выше. ГК может защитить от вредного воздействия свободных радикалов на клетки. В исследованиях Фоши Д. и коллег на крысиной модели, было показало, что ГК поглощает свободные радикалы, тем самым уменьшая ущерб, нанесенный грануляционной ткани. В дополнение к роли поглощения свободных радикалов, ГК может также функционировать в отрицательной обратной петле воспалительной активации через ее специфические биологические взаимодействия с биологическими компонентами воспаления. ФНО-α, важный цитокин, генерируемый при воспалении, стимулирует экспрессию TSG-6 (ФНО-стимулирующего гена 6) в фибробластах и воспалительных клетках. TSG-6, ГК-связывающий белок, также образует стабильный комплекс с сывороточным ингибитором протеиназы IαI (Inter-α-ингибитор), оказывая синергический эффект на плазмин-ингибирующую активность последнего. Плазмин вовлечен в активацию протеолитического каскада матриксных металлопротеиназ и других белков, ведущих к воспалительному повреждению ткани. Таким образом, действие TSG-6/IαI комплексов, которые могут быть дополнительно организованны посредством связывания с ГК во внеклеточном матриксе, могут служить в качестве мощной петли отрицательной обратной связи при умеренном воспалении и стабилизировать грануляционную ткань, по мере того как заживление будет прогрессировать. В мышиной модели воздушного мешка при воспалении, индуцированном каррагенаном/ИЛ-1 (интерлейкином-1β), где ГК проявляла противовоспалительные свойства, уменьшение воспаления могло быть достигнуто путем введения TSG-6. Результат при этом сопоставим с системной терапией дексаметазоном.

Реэпителизация

ГК играет важную роль в нормализации эпидермиса. ГК имеет важные функции в процессе реэпителизации, за счет нескольких своих свойств. Она служит в качестве неотъемлемой части внеклеточного матрикса базальных кератиноцитов, которые являются основными составляющими эпидермиса; ГК служит для «очищения» кожи от свободных радикалов и играет роль в пролиферации и миграции кератиноцитов. В нормальной коже, ГК в относительных высоких концентрациях содержится в базальном слое эпидермиса, где находятся пролиферирующие кератиноциты. CD44 соединяется с ГК в базальном слое эпидермиса, где он экспрессируется на плазме мембраны, сталкиваясь с богатыми ГК матричными мешочками. Основными функциями ГК в эпидермисе являются поддержание внеклеточного пространства и обеспечение открытой и гидратированной структуры для прохождения питательных веществ. Тамми П. и другие его коллеги обнаружили увеличение содержания ГК при наличии ретиноевой кислоты (витамина А). Предлагаемые эффекты ретиноевой кислоты в отношении фото-повреждения и старения кожи могут быть связаны, по крайней мере, частично, с увеличением содержание ГК в коже, порождая увеличение гидратации ткани. Было высказано предположение, что свойство ГК по удалению свободных радикалов способствует защите от солнечного излучения, поддерживает роль CD44 в качестве рецептора ГК в эпидермисе. Эпидермальная ГК также функционирует в качестве манипулятора в процессе пролиферации кератиноцитов, что очень важно для нормального функционирования эпидермиса, а также во время эпителизации при восстановлении тканей. В процессе заживления ран, ГК экспрессируется по краям раны, в матрице соединительной ткани. Кая и соавторы показали, что подавление экспрессии CD44 с помощью определенного трансгена, приводит в результате у животных к дефициту ГК и различным морфологическим изменениям базальных кератиноцитов и неправильному распространению кератиноцитов в ответ на митоген и факторы роста. Наблюдалось также снижение эластичности кожи, нарушение местной воспалительной реакции и нарушения репарации тканей. Их наблюдения поддерживают важную роль ГК и CD44 в физиологии кожи и восстановлении тканей.

Эмбриональное заживление ран и рубцов

Отсутствие волокнистых рубцов является основным признаком заживления ран у плода. Даже в течение более длительных периодов, содержание ГК в ранах плода выше, чем в ранах у взрослых, что позволяет предположить, что ГК, по крайней мере, частично, снижает отложение коллагена и поэтому приводит к снижению образования рубцов. Это предположение согласуется с исследованиями Веста и др., которые показали, что изъятие ГК у взрослых и у плода на поздних сроках беременности вызывает появление фиброзных рубцов.

Роль в метастазировании

Синтазы гиалуроновой кислоты (ГКС) играют роль во всех стадиях раковых метастазов. При производстве анти-адгезионной ГК, ГКС может позволить опухолевым клеткам освободиться от первичной опухолевой массы, и если ГК связывается с рецепторами, такими как CD44, активация ГТФазы может способствовать эпителиальным-мезенхимальным переходам (ЭМП) раковых клеток. Во время процессов интровазации или экстравазации, взаимодействие ГКС, производящих ГК рецепторы, такие как CD44 и RHAMM, провоцирует изменения в клетках, которые позволяют раковым клеткам проникать в кровеносную или лимфатическую системы. Во время передвижения в этих системах, ГК, производимая ГКС, защищает раковые клетки от механических повреждений. Наконец, в формировании метастатических поражений, ГКС производит ГК, чтобы позволить раковым клеткам взаимодействовать с родными клетками на вторичном узле, и производить опухоль. Гиалуронидазы (HAase или HYAL) также играют множество ролей в формировании раковых метастаз. Помогая разрушать внеклеточный матрикс, окружающий опухоль, гиалуронидазы помогают раковым клеткам уходить от первичной массы опухоли и играют важную роль в интровазии, позволяя осуществлять распад базальной лимфатической мембраны или кровеносного сосуда. Гиалуронидазы участвуют в создании метастатического поражения, способствуя экстравазации и очищая внеклеточный матрикс. Наконец, гиалуронидазы играют ключевую роль в процессе ангиогенеза. Фрагменты ГК стимулируют ангиогенез и гиалуронидазы, производящие эти фрагменты. Интересно, что гипоксия также увеличивает производство ГК и активность гиулоронидазов. Рецепторы гиалуроновой кислоты, CD44 и RHAMM, наиболее хорошо изучены с точки зрения их роли в раковом метастазировании. Повышенная экспрессия CD44 клинически положительно коррелирует с метастазами в ряде типов опухолей. CD44 влияет на адгезию опухолевых клеток друг к другу и к эндотелиальным клеткам, перестраивает цитоскелет через Rho ГТФазу, и увеличивает активность разрушающих ферментов внеклеточного матрикса. Повышенная экспрессия RHAMM также клинически коррелировала с метастазами рака. С точки зрения механики, RHAMM способствует подвижности раковых клеток через ряд путей, включая фокальную киназу адгезии (ФАК), МАР-киназу (МАРК), PP60 (с-SRC), и ГТФазы. Рецептор ГК-индуцированной подвижности может также взаимодействовать с CD44, стимулируя ангиогенез в сторону метастатического поражения.

Инъекции гиалуроновой кислоты

Гиалуроновая кислота является распространенным ингредиентом в продуктах по уходу за кожей. До недавнего времени, наполнители гиалуроновой кислоты вводили, используя классическую острую иглу для подкожных инъекций. Игла проходила через нервы и сосуды, вызывая боль и синяки. В 2009 году была разработана новая техника, с помощью которой кожа прокалывается острой иглой, а затем микроскопическая полая игла скользит под кожей, не прокалывая ее глубже.

Добавки в коневодстве

Гиалуроновая кислота используется для лечения суставных заболеваний у лошадей, в особенности во время соревнований или тяжелой работы. ГК предписывается при запястной и скакательной дисфункции, при отсутствии подозрений на сепсис или перелом. Часто используется при синовите, связанном с остеоартритом у лошадей. Вещество может вводиться непосредственно в пораженный сустав, или внутривенно при менее локализованных нарушениях. Может вызывать слабое нагревание связок при прямом введении, но не влияет на клинические результаты. При внутрисуставном введении, лекарство полностью метаболизируется, менее чем за неделю. Обратите внимание, что, в соответствии с канадским регулированием, гиалуроновая кислота, HY-50, не должна вводиться животным, предназначенным на убой. В Европе, однако, не считают, что этот препарат оказывает какой-либо эффект и влияет на вкусовые качества конины.

Этимология

Гиалуроновая кислота извлекается из гилоса (от греч. «стекловидное тело») и уроновой кислоты, так как она была впервые выделена из стекловидного тела и обладает высоким содержанием уроновой кислоты. Термин «гиалуронат» относится к сопряженной основе гиалуроновой кислоты. Поскольку молекула, как правило, присутствует в естественных условиях в полианионном виде, ее обычно называют гиалуроновой кислотой.

История

Гиалуроновая кислота содержится во многих тканях организма, таких как кожа, хрящи и стекловидное тело. Поэтому она хорошо подходит в качестве дополнения биомедицинских добавок, ориентированных на эти ткани. Первый биомедицинский продукт из ГК, Геалон, был разработан в 1970-х и 1980-х гг. компаний Pharmacia, и предназначался для использования в хирургии глаза (а именно, при пересадке роговицы, хирургии катаракты, глаукомы, и операциях по восстановлению отслоенной сетчатки). Другие биомедицинские компании также производят марки ГК для использования в глазной хирургии. Исходный гиалуронан имеет относительно короткий период полураспада (что было показано в опытах на кроликах), поэтому для увеличения длины цепи и стабилизации молекулы для ее использования в медицинских целях были разработаны различные технологии производства. Использовались такие методы, как внедрение перекрестных связей на основе белка, внедрение молекул, поглощающих свободные радикалы, таких как сорбит, и минимальная стабилизация цепей ГК с помощью химических агентов, например, стабилизированная гиалуроновая кислота неживотного происхождения. В конце 1970-х, интраокулярная имплантация линз часто сопровождалась тяжелым отеком роговицы, за счет повреждения эндотелия клеток во время операции. Было очевидно, что необходима вязкая, прозрачная, физиологическая смазка для предотвращения такого соскоба из эндотелиальных клеток.

Исследования

Благодаря своей высокой биосовместимости и присутствию во внеклеточном матриксе тканей, гиалуроновая кислота становится популярной в качестве биоматериала в исследованиях тканевой инженерии. В частности, ряд научно-исследовательских групп обнаружили особые свойства гиалуроновой кислоты в области тканевой инженерии. Эта дополнительная функция позволяет исследователям сформировать требуемую форму, а также воспроизвести терапевтические молекулы. Гиалуроновая кислота может быть создана путем присоединения тиолов (торговое название: Extracel, HyStem), метакрилатов, гексадисиломидов (торговое название: Hymovis), и тираминов (торговое название: Corgel). Гиалуроновая кислота также может быть создана нарямую из формальдегида (торговое название: Hylan-A) или из дивинилсульфона (торговое название: Hylan-B). Благодаря своей способности регулировать ангиогенез путем стимулирования пролиферации эндотелиальных клеток, гиалуроновая кислота может быть использована для создания гидрогелей для изучения морфогенеза сосудов. Эти гидрогели имеют свойства, подобные человеческим мягким тканям, но также легко контролируются и изменяются, что делает ГК очень подходящим веществом для исследований в области тканевой инженерии. Например, гидрогели ГК применяются для воспроизводства сосудистой сети из эндотелиальных клеток-предшественников с использованием соответствующих факторов роста, таких как VEGF и Ang-1, чтобы способствовать пролиферации и образованию сосудистой сети. В этих гелях имеется вакуоль (небольшая полость) и образование просвета, сопровождаемые разветвлением и прорастанием через деградацию гидрогеля и, в конечном счете, образующие конструкцию сложной сети. Способность генерировать сосудистые сети, используя гидрогели ГК, приводит к возможности клинического применения ГК. В исследовании в естественных условиях, когда гидрогель ГК с эндотелиальными колониеобразующими клетками были имплантированы мышам через три дня после формирования гидрогеля, воспроизведенная сосудистая сеть прижилась в течение 2 недель после имплантации. Это указывает на жизнеспособность и функциональность сосудистой сети.

Гиалуроновая кислота купить

Гиалуроновая кислота является достаточно важным компонентом, который входит в состав соединительной ткани, а также содержится в биологических жидкостях (в частности - синовиальной) и производится гиалуронат-синтетазами (класс мембранных белков). Гиалуроновая кислота является трансдермальной системой доставки многих других активных компонентов, необходимых для здоровья кожи лица. На рынке существует масса препаратов, содержащих в качестве компонента гиалуроновую кислоту, и применяемых в косметологии и медицине.

gastroguru © 2017