Геометрическое тело состоящее из 6 граней называется. Гранные геометрические тела. перпендикулярное сечение

Разделы: Технология

Цели урока:

  • закрепить знания о геометрических телах, умения и навыки по построению чертежей многогранников;
  • развивать пространственные представления и пространственное мышление;
  • формировать графическую культуру.

Тип урока: комбинированный.

Оснащение урока: интерактивная доска MIMIO, мультимедийный проектор, компьютеры, проект mimo для интерактивной доски, мультимедийная презентация, программа «Компас-3D LT».

ХОД УРОКА

I. Организационный момент

1. Приветствие;

2. Проверка явки учащихся;

3. Проверка готовности к уроку;

4. Заполнение классного журнала (и электронного)

II. Повторение раннее изученного материала

На интерактивной доске открыт проект mimo

Лист 1. На уроках математики вы изучали геометрические тела. Несколько тел вы видите на экране. Давайте вспомним их названия. Учащиеся дают названия геометрическим телам, если есть затруднения – помогаю. (Рис. 1).

1 – четырехугольная призма
2 – усеченный конус
3 – треугольная призма
4 – цилиндр
5 – шестиугольная призма
6 – конус
7 – куб
8 – усеченная шестиугольная пирамида

Лист 4 . Задание 2. Даны геометрические тела и названия геометрических тел. Вызываем ученика к доске и вместе с ним перетаскиваем многогранники и тела вращения под названия, а затем перетаскиваем названия геометрических тел (рис. 2).

Делаем вывод, что все тела делятся на многогранники и тела вращения.

Включаем презентацию «Геометрические тела» (Приложение ). Презентация содержит 17 слайдов. Можно использовать презентацию на нескольких уроках, она содержит дополнительный материал (слайды 14-17). Со слайда 8 есть гиперссылка на Презентацию 2 (развертки куба). Презентация 2 содержит 1 слайд, на котором изображены 11 разверток куба (они являются ссылками на видеоролики). На уроке использована интерактивная доска MIMIO, а также учащиеся работают на компьютерах (выполнение практической работы).

Слайд 2. Все геометрические тела делятся на многогранники и тела вращения. Многогранники: призма и пирамида. Тела вращения: цилиндр, конус, шар, тор. Схему учащиеся перечерчивают в рабочую тетрадь.

III. Объяснение нового материала

Слайд 3. Рассмотрим пирамиду. Записываем определение пирамиды. Вершина пирамиды – общая вершина всех граней, обозначается буквой S. Высота пирамиды – перпендикуляр, опущенный из вершины пирамиды (Рис. 3).

Слайд 4. Правильная пирамида. Если основание пирамиды - правильный многоугольник, а высота опускается в центр основания, то - пирамида правильная.
В правильной пирамиде все боковые ребра равны, все боковые грани равные равнобедренные треугольники.
Высота треугольника боковой грани правильной пирамиды называется - апофема правильной пирамиды .

Слайд 5. Анимация построения правильной шестиугольной пирамиды с обозначением ее основных элементов (Рис. 4).

Слайд 6 . Записываем в тетрадь определение призмы. Призма – многогранник, у которого два основания (равные, параллельно расположенные многоугольники), а боковые грани параллелограммы. Призма может быть четырехугольной, пятиугольной, шестиугольной и т.д. Призма называется по фигуре, лежащей в основании. Анимация построения правильной шестиугольной призмы с обозначением ее основных элементов (Рис. 5).

Слайд 7. Правильная призма – это прямая призма, в основании которой лежит правильный многоугольник. Параллелепипед – правильная четырехугольная призма (Рис. 6).

Слайд 8. Куб – параллелепипед, все грани которого квадраты (Рис. 7).

(Дополнительный материал: на слайде есть гиперссылка на презентацию с развертками куба, всего 11 разных разверток).
Слайд 9. Записываем определение цилиндра.Тело вращения – цилиндр, образованное вращением прямоугольника вокруг оси, проходящей через одну из его сторон. Анимация получения цилиндра (Рис. 8).

Слайд 10. Конус – тело вращения, образованное вращением прямоугольного треугольника вокруг оси, проходящей через один из его катетов (Рис.9).

Слайд 11. Усеченный конус – тело вращения, образованное вращением прямоугольной трапеции вокруг оси, проходящей через ее высоту (Рис. 10).

Слайд 12. Шар – тело вращения, образованное вращением круга вокруг оси, проходящей через его диаметр (Рис. 11).

Слайд 13. Тор – тело вращения, образованное вращением круга вокруг оси, параллельной диаметру круга (Рис. 12).

Учащиеся записывают определения геометрических тел в тетрадь.

IV. Практическая работа«Построение чертежа правильной призмы»

Переключаемся на проект mimio

Лист 7 . Дана треугольная правильная призма. В основании лежит правильный треугольник. Высота призмы = 70 мм, а сторона основания = 40 мм. Рассматриваем призму (направление главного вида показано стрелкой), определяем плоские фигуры, который мы увидим на виде спереди, сверху и слева. Вытаскиваем изображения видов и расставляем на поле чертежа (Рис. 13).

Учащиеся самостоятельно выполняют чертеж правильной шестиугольной призмы в программе «Компас – 3D». Размеры призмы: высота – 60 мм, диаметр описанной окружности вокруг основания – 50 мм.
Построение чертежа с вида сверху (Рис. 14).

Затем строится вид спереди (Рис. 15).

Затем строится вид слева и наносятся размеры (Рис. 16).

Работы проверяются и сохраняются на компьютерах учащимися.

V. Дополнительный материал по теме

Слайд 14 . Правильная усеченная пирамида (Рис. 17).

Слайд 15. Пирамида, усеченная наклонной плоскостью (Рис. 18).

Слайд 16. Развертка правильной треугольной пирамиды (Рис. 19).

Слайд 17. Развертка параллелепипеда (Рис. 20).

Многогранники не только занимают видное место в геометрии, но и встречаются в повседневной жизни каждого человека. Не говоря уже об искусственно созданных предметах обихода в виде различных многоугольников, начиная со спичечного коробка и заканчивая архитектурными элементами, в природе также встречаются кристаллы в форме куба (соль), призмы (хрусталь), пирамиды (шеелит), октаэдра (алмаз) и т. д.

Понятие многогранника, виды многогранников в геометрии

Геометрия как наука содержит раздел стереометрию, изучающую характеристики и свойства объёмных тела, стороны которых в трёхмерном пространстве образованы ограниченными плоскостями (гранями), носят название "многогранники". Виды многогранников насчитывают не один десяток представителей, отличающихся количеством и формой граней.

Тем не менее у всех многогранников есть общие свойства:

  1. Все они имеют 3 неотъемлемых компонента: грань (поверхность многоугольника), вершина (углы, образовавшиеся в местах соединения граней), ребро (сторона фигуры или отрезок, образованный в месте стыка двух граней).
  2. Каждое ребро многоугольника соединяет две, и только две грани, которые по отношению друг к другу являются смежными.
  3. Выпуклость означает, что тело полностью расположено только по одну сторону плоскости, на которой лежит одна из граней. Правило применимо ко всем граням многогранника. Такие геометрические фигуры в стереометрии называют термином выпуклые многогранники. Исключение составляют звёздчатые многогранники, которые являются производными правильных многогранных геометрических тел.

Многогранники можно условно разделить на:

  1. Виды выпуклых многогранников, состоящих из следующих классов: обычные или классические (призма, пирамида, параллелепипед), правильные (также называемые Платоновыми телами), полуправильные (второе название - Архимедовы тела).
  2. Невыпуклые многогранники (звёздчатые).

Призма и её свойства

Стереометрия как раздел геометрии изучает свойства трёхмерных фигур, виды многогранников (призма в их числе). Призмой называют геометрическое тело, которое имеет обязательно две совершенно одинаковые грани (их также называют основаниями), лежащие в параллельных плоскостях, и n-ое число боковых граней в виде параллелограммов. В свою очередь, призма имеет также несколько разновидностей, в числе которых такие виды многогранников, как:

  1. Параллелепипед - образуется, если в основании лежит параллелограмм - многоугольник с 2 парами равных противоположных углов и двумя парами конгруэнтных противоположных сторон.
  2. имеет перпендикулярные к основанию рёбра.
  3. характеризуется наличием непрямых углов (отличных от 90) между гранями и основанием.
  4. Правильная призма характеризуется основаниями в виде с равными боковыми гранями.

Основные свойства призмы:

  • Конгруэнтные основания.
  • Все рёбра призмы равны и параллельны по отношению друг к другу.
  • Все боковые грани имеют форму параллелограмма.

Пирамида

Пирамидой называют геометрическое тело, которое состоит из одного основания и из n-го числа треугольных граней, соединяющихся в одной точке - вершине. Следует отметить, что если боковые грани пирамиды представлены обязательно треугольниками, то в основании может быть как треугольный многоугольник, так и четырёхугольник, и пятиугольник, и так до бесконечности. При этом название пирамиды будет соответствовать многоугольнику в основании. Например, если в основании пирамиды лежит треугольник - это , четырёхугольник - четырёхугольная, и т. д.

Пирамиды - это конусоподобные многогранники. Виды многогранников этой группы, кроме вышеперечисленных, включают также следующих представителей:

  1. имеет в основании правильный многоугольник, и высота ее проектируется в центр окружности, вписанной в основание или описанной вокруг него.
  2. Прямоугольная пирамида образуется тогда, когда одно из боковых рёбер пересекается с основанием под прямым углом. В таком случае это ребро справедливо также назвать высотой пирамиды.

Свойства пирамиды:

  • В случае если все боковые рёбра пирамиды конгруэнтны (одинаковой высоты), то все они пересекаются с основанием под одним углом, а вокруг основания можно прочертить окружность с центром, совпадающим с проекцией вершины пирамиды.
  • Если в основании пирамиды лежит правильный многоугольник, то все боковые рёбра конгруэнтны, а грани являются равнобедренными треугольниками.

Правильный многогранник: виды и свойства многогранников

В стереометрии особое место занимают геометрические тела с абсолютно равными между собой гранями, в вершинах которых соединяется одинаковое количество рёбер. Эти тела получили название Платоновы тела, или правильные многогранники. Виды многогранников с такими свойствами насчитывают всего пять фигур:

  1. Тетраэдр.
  2. Гексаэдр.
  3. Октаэдр.
  4. Додекаэдр.
  5. Икосаэдр.

Своим названием правильные многогранники обязаны древнегреческому философу Платону, описавшему эти геометрические тела в своих трудах и связавшему их с природными стихиями: земли, воды, огня, воздуха. Пятой фигуре присуждали сходство со строением Вселенной. По его мнению, атомы природных стихий по форме напоминают виды правильных многогранников. Благодаря своему самому захватывающему свойству - симметричности, эти геометрические тела представляли большой интерес не только для древних математиков и философов, но и для архитекторов, художников и скульпторов всех времён. Наличие всего лишь 5 видов многогранников с абсолютной симметрией считалось фундаментальной находкой, им даже присуждали связь с божественным началом.

Гексаэдр и его свойства

В форме шестигранника преемники Платона предполагали сходство со строением атомов земли. Конечно же, в настоящее время эта гипотеза полностью опровергнута, что, однако, не мешает фигурам и в современности привлекать умы известных деятелей своей эстетичностью.

В геометрии гексаэдр, он же куб, считается частным случаем параллелепипеда, который, в свою очередь, является разновидностью призмы. Соответственно и свойства куба связаны со с той лишь разницей, что все грани и углы куба равны между собой. Из этого вытекают следующие свойства:

  1. Все рёбра куба конгруэнтны и лежат в параллельных плоскостях по отношению друг к другу.
  2. Все грани - конгруэнтные квадраты (всего в кубе их 6), любой из которых может быть принят за основание.
  3. Все межгранные углы равны 90.
  4. Из каждой вершины исходит равное количество рёбер, а именно 3.
  5. Куб имеет 9 которые все пересекаются в точке пересечения диагоналей гексаэдра, именуемой центром симметрии.

Тетраэдр

Тетраэдр - это четырёхгранник с равными гранями в форме треугольников, каждая из вершин которых является точкой соединения трёх граней.

Свойства правильного тетраэдра:

  1. Все грани тетраэда - это из чего следует, что все грани четырёхгранника конгруэнтны.
  2. Так как основание представлено правильной геометрической фигурой, то есть имеет равные стороны, то и грани тетраэдра сходятся под одинаковым углом, то есть все углы равны.
  3. Сумма плоских углов при каждой из вершин равняется 180, так как все углы равны, то любой угол правильного четырёхгранника составляет 60.
  4. Каждая из вершин проецируется в точку пересечения высот противоположной (ортоцентр) грани.

Октаэдр и его свойства

Описывая виды правильных многогранников, нельзя не отметить такой объект, как октаэдр, который визуально можно представить в виде двух склеенных основаниями четырёхугольных правильных пирамид.

Свойства октаэдра:

  1. Само название геометрического тела подсказывает количество его граней. Восьмигранник состоит из 8 конгруэнтных равносторонних треугольников, в каждой из вершин которого сходится равное количество граней, а именно 4.
  2. Так как все грани октаэдра равны, равны и его межгранные углы, каждый из которых равняется 60, а сумма плоских углов любой из вершин составляет, таким образом, 240.

Додекаэдр

Если представить, что все грани геометрического тела представляют собой правильный пятиугольник, то получится додекаэдр - фигура из 12 многоугольников.

Свойства додекаэдра:

  1. В каждой вершине пересекаются по три грани.
  2. Все грани равны и имеют одинаковую длину рёбер, а также равную площадь.
  3. У додекаэдра 15 осей и плоскостей симметрии, причём любая из них проходит через вершину грани и середину противоположного ей ребра.

Икосаэдр

Не менее интересная, чем додекаэдр, фигура икосаэдр представляет собой объёмное геометрическое тело с 20 равными гранями. Среди свойств правильного двадцатигранника можно отметить следующие:

  1. Все грани икосаэдра - равнобедренные треугольники.
  2. В каждой вершине многогранника сходится пять граней, и сумма смежных углов вершины составляет 300.
  3. Икосаэдр имеет так же, как и додекаэдр, 15 осей и плоскостей симметрии, проходящих через середины противоположных граней.

Полуправильные многоугольники

Кроме Платоновых тел, в группу выпуклых многогранников входят также Архимедовы тела, которые представляют собой усечённые правильные многогранники. Виды многогранников данной группы обладают следующими свойствами:

  1. Геометрические тела имеют попарно равные грани нескольких типов, например, усечённый тетраэдр имеет так же, как и правильный тетраэдр, 8 граней, но в случае Архимедова тела 4 грани будут треугольной формы и 4 - шестиугольной.
  2. Все углы одной вершины конгруэнтны.

Звёздчатые многогранники

Представители необъёмных видов геометрических тел - звёздчатые многогранники, грани которых пересекаются друг с другом. Они могут быть образованы путём слияния двух правильных трёхмерных тел либо в результате продолжения их граней.

Таким образом, известны такие звёздчатые многогранники, как: звёздчатые формы октаэдра, додекаэдра, икосаэдра, кубооктаэдра, икосододекаэдра.

3 4 6 12 8 O h 3 5 12 30 20 I h Гексаэдр или куб 4 3 8 12 6 O h 5 3 20 30 12 I h

Название каждого многогранника происходит от греческого названия количества его граней и слова "грань".

Комбинаторные свойства

  • Эйлером была выведена формула, связывающая число вершин (В), граней (Г) и рёбер (Р) любого выпуклого многогранника простым соотношением : В + Г = Р + 2.
  • Отношение количества вершин правильного многогранника к количеству рёбер одной его грани равно отношению количества граней этого же многогранника к количеству рёбер, выходящих из одной его вершины. У тетраэдра это отношение равно 4:3, у гексаэдра и октаэдра - 2:1, а у додекаэдра и икосаэдра - 4:1.
  • Правильный многогранник может быть комбинаторно описан символом Шлефли {p , q }, где: p - число сторон каждой грани; q - число рёбер, сходящихся в каждой вершине.
Символы Шлефли для правильных многогранников приведены в следующей таблице:
Многогранник Вершины Рёбра Грани Символ Шлефли
тетраэдр 4 6 4 {3, 3}
куб 8 12 6 {4, 3}
октаэдр 6 12 8 {3, 4}
додекаэдр 20 30 12 {5, 3}
икосаэдр 12 30 20 {3, 5}
Из этих соотношений и формулы Эйлера можно получить следующие выражения для В, Р и Г:

Геометрические свойства Углы

С каждым правильным многогранником связаны определённые углы , характеризующие его свойства. Двугранный угол между смежными гранями правильного многогранника {p, q} задаётся формулой:

Иногда удобнее пользоваться выражением через тангенс :

где принимает значения 4, 6, 6, 10 и 10 для тетраэдра, куба, октаэдра, додекаэдра и икосаэдра соответственно.

Угловой дефект при вершине многогранника – это разность между 2π и суммой углов между рёбрами каждой грани при этой вершине. Дефект при любой вершине правильного многогранника:

Многогранник Двугранный угол
θ
Плоский угол между рёбрами при вершине Угловой дефект (δ) Телесный угол при вершине (Ω) Телесный угол, стягиваемый гранью
тетраэдр 70.53° 60° π π
куб 90° 1 90°
октаэдр 109.47° √2 60°, 90°
додекаэдр 116.57° 108°
икосаэдр 138.19° 60°, 108°

Радиусы, площади и объёмы

С каждым правильным многогранником связаны три концентрические сферы:

  • Описанная сфера, проходящая через вершины многогранника;
  • Срединная сфера, касающаяся каждого его ребра в середине;
  • Вписанная сфера, касающаяся каждой его грани в её центре.

Радиусы описанной () и вписанной () сфер задаются формулами:

где θ - двугранный угол между смежными гранями многогранника. Радиус срединной сферы задаётся формулой:

где h - величина описанная выше, при определении двугранных углов (h = 4, 6, 6, 10 или 10). Отношения описанных радиусов к вписанным радиусам симметрично относительно p и q:

Площадь поверхности S правильного многогранника {p, q} вычисляется, как площадь правильного p-угольника, умноженная на число граней Г:

Объём правильного многогранника вычисляется, как умноженный на число граней объём правильной пирамиды , основанием которой служит правильный p-угольник, а высотой - радиус вписанной сферы r:

Приведённая таблица содержит список различных радиусов, площадей поверхностей и объёмов правильных многогранников. Значение длины ребра a в таблице приравнены к 2.

Многогранник
(a = 2)
Радиус вписанной сферы (r ) Радиус срединной сферы (ρ) Радиус описанной сферы (R )

Константы φ и ξ задаются выражениями

Среди правильных многогранников как додекаэдр, так и икосаэдр представляют собой лучшее приближение к сфере. Икосаэдр имеет наибольшее число граней, наибольший двугранный угол и плотнее всего прижимается к своей вписанной сфере. С другой стороны, додекаэдр имеет наименьший угловой дефект, наибольший телесный угол при вершине и максимально заполняет свою описанную сферу.

Любое геометрическое тело состоит из оболочки, т. е. внешней поверхности, и какого-либо материала, его наполняющего (рис. 42). Каждое геометрическое тело имеет свою форму, кото­рая различается по составу, структуре и размерам.

Состав формы геометрического тела - перечень отсеков по­верхностей, составляющих его (табл. 4). Так, форма прямоуголь­ного параллелепипеда состоит из шести отсеков, поверхностей (граней): две из них являются основаниями параллелепипеда, а остальные четыре отсека образуют замкнутую выпуклую лома­ную поверхность, называемую боковой поверхностью.

Рис 42. Геометрическое тело: 1 - оболочка; 2 - отсеки поверхностей, образующих оболочку тела

Структура формы геометрического тела - характеристика формы, которая показывает взаимосвязь и расположение отсеков поверхностей относительно друг друга (см. рис. 44).

Эти характеристики взаимосвязаны и в наибольшей степени определяют форму геометрического тела и любого другого объ­екта.

По форме простые геометрические тела делятся на много­гранники и тела вращения.

Плоскость является частным случаем поверхности.

Многогранники - геометрические тела, оболочка которых об­разована отсеками плоскостей (рис. 43, а).

Грани - отсеки плоскостей, которые составляют поверхность (оболочку) многогранника; ребра - отрезки прямых, по которым пересекаются грани; вершины - концы ребер.

Тела вращения - геометрические тела (рис. 43, б), оболочка которых представляет собой поверхность вращения (например, шар) либо состоит из отсека поверхности вращения и одного (двух) отсека плоскостей (например, конус, цилиндр и т. п.).

Рис. 43. Многогранники (а) и тела вращения (б): 1 - оболочка геометрического тела;
2 - отсеки плоскостей; 3 - отсеки поверхностей вращения

4. Состав простых геометрических тел




Структура формы влияет на внешний облик геометрического тела. Рассмотрим это на примере прямого и наклонного цилинд­ров (рис. 44), отсеки оснований которых по-разному расположены относительно друг друга.

Рис. 44. Структурные различия в форме цилиндров

Рис. 45. Изменения формы цилиндров



Рис. 46. Четырехугольные пирамиды различной формы

Сравнивая изображения цилиндров на рисунке 45, можно сделать вывод, что изменение положения одного из оснований приводит к изменению формы геометрического тела.

Изменение высоты, ширины, длины, диаметра основания, угла наклона осевой, положение оснований относительно друг друга су­щественно влияет на форму геометрических тел. Например, рас­смотрите четырехугольные пирамиды различной формы (рис. 46).

Рис. 47. Геометрические тела

gastroguru © 2017